New Grounds: Time Dimension in Earned Value Management

Ing. Stephan Vandevoorde

Fabricom Airport Systems Senior Project Manager stephan.vandevoorde@fabricom-gti.com + 32 (0)478 254761

Prof. Dr. Mario Vanhoucke

Faculty of Economics and Business Administration, Ghent University Operations & Technology Management Centre, Vlerick Leuven Ghent Management School mario.vanhoucke@ugent.be

Earned Value Management

Schedule Variance SV

SV = **EV** - **PV** < 0: behind schedule > 0: ahead of schedule

SV measures a volume of work performed (€)

• difficult to understand

At the end of the project:

- EV = PV --> SV = EV EV = 0
- showing perfect performance!

Watch Out

Be carefull by using data derived from software tools

improving schedule trend?

close to the green area?

- May be due to the "strange" behavior of the SV & SPI, no research has been done so far.
- However there is a need to have a schedule metric which behaves correctly during the whole project life, to sanity check schedule expectations

Extending Earned Value

Earned Schedule Concept

Created by Walt Lipke, Schedule is Different, The Measurable News, Summer 2003

Schedule Variance SV(t)

SV(t) = ES - AD < 0: behind schedule > 0: ahead of schedule

SV(t) measures in time units

easy to understand

At the end of the project:

• SV(t) shows real deviation from plan

Schedule Performance SPI(t)

SPI(t) = ES / AD < 1: behind schedule > 1: ahead of schedule

SPI(t) has no dimension

• easier to understand

At the end of the project:

• SPI(t) shows real schedule performance

PD/SPI: forecasting capability only at early & middle project stage PD/SPI(t): forecasting capability during the whole project life

What Next

Emperical evidence:

- Vandevoorde St., Vanhoucke M., A Comparison of different project duration forecasting methods using earned value metrics, Ghent University, working paper 2005/312, June 2005
- to appear in International Journal of Project Management
- State of the Art Report on Forecasting Duration Methods
- Earned Schedule provide schedule metrics which behave correctly during the whole project life,
- Earned Schedule forecasting is more reliable, and usefull to sanity check schedule expectations
- But can these findings be generalised? So we started a research project.
 - Vanhoucke M., Vandevoorde St., A simulation and evaluation of earned value metrics to forecast the project duration, Ghent University, working paper 2005/317, July 2005
 - paper under submission for publishing in international journal

Research Methodology

Network Generation

- So far: ES adopted to a small set of real life project data
- But: we need a very large dataset, which is not available
- Create a database of networks with a controlled topological structure by the using a network generator
- So we guarantee we have a very large set of networks than can and might occur in practice
- To control the design of the generated networks 4 indicators are used:
 - Network indicator: Serial or parallel network (SP)
 - Activity indicator: Activity distribution (AD):
 - Precedence relations indicator: Length of arcs (LA):
 - Float indicator: Topological float (TF)
 - Based on: Vanhoucke, M., Coelho, J.S., Tavares, L.V. and Debels, D., 2004, "On the topological structure of a network"

Execution scenarios

Research Analysis

- 1. Forecast Accuracy for each Scenario
 - We measure the overall forecast accuracy of all methods for each scenario by using the MAPE
 - Comparison between scenarios is of little value, as simulations have been forced to reflect the respective scenario
- 2. Influence of the network structure
 - We measure the influence of the network structure as defined by the network indicators of the forecast accuracy of all methods for each scenario by using the MPE

3. Forecast Accuracy along project stage

 We measure the overall forecast accuracy of all methods along the project stage (early, middle, late) by using the MPE for early and late finish projects

Forecast Accuracy / Scenario

Table 5. The forecast accuracy (MAPE) of the three methods for the 9 scenarios

	PV1	PV2	PV3	ED1	ED2	ED3	ES1	ES2	ES3
Scenario 1	0.106	0.128	0.481	0.112	0.128	0.249	0.076	0.099	0.270
Scenario 2	0.114	0.095	0.101	0.121	0.095	0.087	0.094	0.036	0.054
Scenario 3	0.067	0.080	0.254	0.066	0.080	0.175	0.055	0.064	0.164
Scenario 4	0.035	0.071	0.426	0.023	0.071	0.229	0.033	0.092	0.237
Scenario 5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Scenario 6	0.024	0.051	0.416	0.021	0.051	0.242	0.019	0.063	0.273
Scenario 7	0.042	0.077	0.409	0.032	0.077	0.222	0.034	0.093	0.227
Scenario 8	0.100	0.090	0.119	0.102	0.090	0.102	0.076	0.031	0.067
Scenario 9	0.061	0.064	0.232	0.064	0.064	0.132	0.046	0.032	0.142

Influence of SP - Indicator

Execution scenarios

Table 9. The mean percentage error (MPE) for project with RD > PD (project delay)

	Early			Middle									Late		
	0-20	0-30	0-40	20-60	20-70	20-80	30-60	30-70	30-80	40-60	40-70	40-80	60-100	70-100	80-100
PV1	0.11	0.10	0.09	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.08
PV2	-0.03	-0.03	-0.02	-0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.05	0.06	0.07
PV3	-0.26	-0.24	-0.22	-0.16	-0.15	-0.14	-0.14	-0.13	-0.12	-0.14	-0.13	-0.12	-0.07	-0.06	-0.04
ED1	0.11	0.11	0.10	0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.08
ED2	-0.03	-0.03	-0.02	-0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.05	0.06	0.07
ED3	-0.24	-0.22	-0.19	-0.12	-0.10	-0.08	-0.09	-0.08	-0.06	-0.08	-0.07	-0.05	0.03	0.04	0.06
ES1	0.11	0.10	0.10	0.08	0.07	0.07	0.07	0.07	0.06	0.07	0.07	0.06	0.03	0.03	0.02
ES2	-0.04	-0.05	-0.04	-0.03	-0.03	-0.02	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	0.00	0.00	0.00
ES3	-0.26	-0.24	-0.22	-0.14	-0.13	-0.11	-0.12	-0.10	-0.09	-0.10	-0.09	-0.08	-0.03	-0.02	-0.02

Table 7. The mean percentage error (MPE) for project with RD < PD (ahead of schedule)

	Early			Middle									Late		
	0-20	0-30	0-40	20-60	20-70	20-80	30-60	30-70	30-80	40-60	40-70	40-80	60-100	70-100	80-100
PV1	-0.89	-0.83	-0.78	-0.64	-0.60	-0.56	-0.60	-0.56	-0.52	-0.56	-0.52	-0.47	-0.29	-0.25	-0.21
PV2	-0.16	-0.15	-0.16	-0.14	-0.15	-0.15	-0.14	-0.15	-0.15	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14
PV3	0.35	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.38	0.38	0.39	0.39
ED1	-0.94	-0.89	-0.84	-0.72	-0.68	-0.64	-0.68	-0.64	-0.60	-0.64	-0.60	-0.55	-0.35	-0.31	-0.27
ED2	-0.16	-0.15	-0.16	-0.14	-0.15	-0.15	-0.14	-0.15	-0.15	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14
ED3	0.32	0.31	0.29	0.24	0.21	0.19	0.22	0.19	0.17	0.19	0.17	0.15	0.04	0.01	-0.01
ES1	-0.91	-0.86	-0.80	-0.67	-0.62	-0.57	-0.63	-0.58	-0.53	-0.58	-0.53	-0.48	-0.23	-0.18	-0.13
ES2	0.05	0.05	0.04	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01	0.00	0.00	0.00
ES3	0.44	0.42	0.40	0.33	0.30	0.28	0.30	0.28	0.25	0.28	0.26	0.23	0.11	0.09	0.07

Conclusions/Future Research

- 1. Forecast Accuracy (continued)
 - Accuracy of time and cost metrics
 - Need for new software package?
 - Real-life data available?
- 2. Project complexity?
 - What if the project is not yet defined?
 - Rework / Uncertainty / Dynamic planning / ...
- 3. Early warning or corrective action?
 - What do we do with more accurate metrics?
 - Corrective actions (re-active) or management reserve (proactive)?

Questions

Coming Soon:

Management Jaarboek 2006

"Waar zit het tijdsaspect in een "earned value" meetsysteem?

